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Stagnation flow with a temperature-dependent viscosity 
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(Received 25 January 1982 and in revised form 16 September 1982) 

I n  this paper we derive so1ut)ions for two stagnation flows of an incompressible 
Newtonian fluid wit>h i’nfinitc Prandtl number and exponentially temperature- 
dependent viscosity. The two stagnation flows are the impingement of a hot fluid 
against a cold wall and against a cold half-space of the same material. We find that 
the same solutions apply to both axisymmctric and two-dimensional flows. We apply 
these solutions to the thinning of the Earth’s lithosphere by a mantle plume. The 
equilibrium lithospheric thickness and the rate of lithospheric thinning are obtained. 

1. Introduction 
Fluids with a temperature-dependent rheology are important in a number of 

applications. Examples include fabrication processes involving polymers and glasses. 
A temperature-dependent rheology is also appropriate for the solid-state creep of the 
Earth’s mantle on geological timescales. I n  this paper we derive solutions for two 
stagnation flows with temperature-dependent viscosities. Our analysis is restricted 
to incompressible Newtonian fluids with infinite Prandtl number and exponentially 
temperature-dependent viscosity. 

The first stagnation flow is the impingement of a hot fluid against a cold wall. We 
obtain the thickness of the thermal boundary layer and the heat flux from the fluid 
to the wall. Figure 1 ( a )  illustrates the first stagnation flow. The second stagnation 
flow is the impingement of a hot fluid against a half-space of the same material. The 
half-space is sufficiently cold that i t  behaves as a rigid body. The hot fluid 
continuously heats and entrains the cold half-space, and we solve for the rate of 
destruction of the cold half-space by the hot stagnation-point flow. Related problems 
are the impingement of a fluid phase upon a solid phase (Roberts 1958 : Turcotte 1960) 
and laminar-flame propagation in premixed gases (e.g. Penner 1957). We first derive 
solutions for axisymmetric stagnation flows and then show that the same solutions 
apply to two-dimensional stagnation flows. 

2. Cold-wall boundary condition 
Landau & Lifshitz (1959) give the governing equations of an incompressible 

Newtonian fluid with infinite Prandtl number and temperature-dependent viscosity. 
Conservation of momentum, mass and energy for axisymmetric flows requires 
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Cold wall z = O  

Cold half-space 

( b )  

FIGURE 1 .  (a )  Hot  stagnation flow with a cold wall boundary condition. ( b )  H o t  stagnation flow 
with a cold-half-space boundary condition. The fluid and the half-space are composed of the same 
material. The hot fluid continuously heats and entrains the cold half-space. 

where p is pressure, v, is radial velocity, v, is vertical velocity, T is temperature, p 
is density, v is kinematic viscosity and K is thermal diffusivity. 

In  the vicinity of a stagnation point i t  is appropriate to assume 

(Roberts 1958; Schlichting 1979). The velocity components given in ( 5 )  satisfy 
conservation of mass, and substitution of ( 5 )  into ( i ) ,  ( 2 )  and ( 4 )  yields 

(7) 
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Equation (7) implies a2p/draz = 0. Hence, differentiating (6) with respect to z we 

Note that adding a buoyancy term or a gravity term to (2) would leave equation (9) 
for f ( z )  unchanged. 

At the cold wall, we require no-slip boundary conditions. Far from the wall, the 
flow is isothermal. If the flow is isothermal, then (9) implies that f ( z )  is a cubic 
polynomial. Since f ( 0 )  = df(O)/dz = 0, the leading term in the polynomial is the 
quadratic term. Hence the boundary conditions are 

Utilizing (lo), we obtain an inner solution that can be matched to  a variety of outer 
solutions. Examples of outer solutions include a Stokes flow over a sphere and the 
impingement of a thermal plume upon a flat plate. We will consider the latter problem 
in some detail in $4 in terms of the impingement of a mantle plume on the Earth's 
lithosphere. 

Now we specialize to an exponentially temperature-dependent viscosity 

v = v,, exp ( -  T/Ta) (11)  

and define dimensionless variables and parameters 

Inserting (11)  and (12) into (8)-(10) yields 

E[exp(-b6)%] allz dV2 = 0, 

Note that, since (9) is a homogeneous equation, the pre-exponential factor in the 
viscosity law does not enter into the analysis. Integrating (14) together with 
boundary conditions (15), we obtain 

exp(-bbB)--=exp(-b). d2q5 
dy2  

Combining (13,), (15) and (16) gives 

17-2 
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FIGURE 2. Dimensionless stagnation heat flux c as a function of b for the cold-wall boundary 
condition. The solid curve is calculated from (17). The dashed curve is c = 1.46/b. For b > 8 the 
two curves are indistinguishable. 

with boundary conditions 

Equation (1 7) is a fourth-order nonlinear ordinary differential equation. It can be 
solved analytically only in the case b = 0 (the constant-viscosity case), when we find 

# = I  27 2 7 (19) 

where r is the gamma funct,ion. We solve (17) and (18) numerically by guessing 
d3#/dy3 a t  T,I = 0 and integrating to  find d2#/dy2 a t  infinity, i.e. a t  large 7. We then 
iterate on d3$(0)/dy3 until we obtain d2$(oo)/dy2 = 1. From (16) we obtain the 
dimensionless stagnation heat flux 

Figure 2 gives G as a function of b. For 6 > 8, c = 1-46/b is an excellent approximation. 
Figures 3 and 4 show #(y) and O(y) for various values of b. Figure 5 gives the thermal 
boundary-layer thickness as a function of b,  where the thermal boundary layer is 
defined as that portion of the fluid for which 0 < 0 < 09. 
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9 
FIGURE 3. Dimensionless velocity 4 as a function of dimensionless distance 7 

for the cold-wall boundary condition. 

9 

FIGURE 4. Dimensionless temperature 8 as a function of dimensionless distance 
7 for the cold-wall boundary condition. 
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FIGURE 5. Dimensionless thermal boundary-layer thickness as a function of 6 for the cold-wall 
boundary condition. The thermal boundary layer is that portion of the fluid for which 0 < 8 < 09. 

If b is sufficiently large, then d2$(0)/dy2 = exp (-b) will exceed a computer's 
underflow limit. We remedy this problem by expanding the solution of (13) and (16) 
in powers of 8 = exp ( - b) ,  and then use this expansion to obtain $, d $ / d y ,  d2$ /dy2  
and d3$/dy3 at some y where d2$/dy2 is sufficiently large that (1  7 )  can be solved on 
a computer. Let 

Inserting (21) into (13) and (16) and equating powers of e gives 

(21) 0 = C T + € B ,  $ = €6. 

exp(-bey)-= d26 1, 
dy2 

2cqT+- = 0. 
dy2  

d2g 

Solving (22) and (23) together with the boundary conditions 

" I  1 1 
0 = cy+exp (-b) ( b ~ y ) + - y ~ + ~ y 2 + -  +- . 

3b b G b3c2' b4c3 

(23) 

The same solutions that apply to axisymmetric stagnation flows also apply to 
two-dimensional stagnation flows. In Cartesian coordinates the governing equations 
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of two-dimensional incompressible Newtonian flow with infinite Prandtl number and 
temperature-dependent viscosity are (Landau & Lifschitz 1959) 

where vJ is horizontal velocity. Letting 

(30) 
d f  

V ,  = -2f(z), V ,  = 2 ~ - ,  T = T(z ) ,  
dz 

we obtain 

d T  d 2 T  
d z  dz2 ’ -2f(z)- = K -  

which are identical to (9) and (8) respectively. We then follow the same procedure 
as before to obtain (17). 

3. Cold half-space boundary condition 
We next solve for the rate of destruction of a cold half-space of ambient 

temperature 8 = 0 by a hot stagnation flow of ambient temperature 8 = 1. The 
stagnation flow and the half-space are composed of the same material. The stagnation 
flow heats the half-space, thus incorporating the half-space into the stagnation flow. 
Consider an isotherm 8 = 8* that is well within the cold half-space. We assume that 
for 8 Q 8* the half-space is sufficiently cold that i t  can be regarded as rigid. Of course, 
for any finite temperature the half-space will not actually be rigid. But in order to 
make the problem well-defined it is necesary to assume that the viscosity is infinite 
for 8 less than some 8*. In  the related problem of laminar-flame propagation it is 
assumed that the reaction rate is zero at a sufficiently low temperature (Penner 1957). 
This is a reasonable assumption as long as finite upstream regions are considered. 

We fix the isotherm 8 = 8* at q = 0 and solve for the velocity $o of the half-space 
at q = 0. For 8 < 8* the half-space is sufficiently cold so that radial velocity vanishes 
for q < 0. By solving (13) with constant $ = $o and boundary conditions e(0) = 8* 
and 8( - m) = 0, we can show that $o = -c/28*, where c is the dimensionless 
stagnation heat flux. Hence, we find the rate of destruction $o of a half-space by 
solving (17) with boundary conditions 
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FIGURE 6. Dimensionless rate of destruction I $,, I of a cold half-space by 
a hot stagnation flow as a function of b. 

The boundary conditions on d2# /dv2  and d3$/dy3  a t  ‘1 = 0 follow from #o = -c/28* 
and (13). We choose a 8* that  is deep in the rigid half-space, guess #o. and integrate 
to obtain d2#/dy2 a t  infinity. We then iterate on 4, until we obtain d2#/dy2 = 1 .  Then 
we take 8* to  be a fraction of its previous value and again solve for 4,. If b > 20 and 
B* is sufficiently small, then #, is unchanged. However, if b < 20, #, does change, 
whatever the value of 8*. That is, the viscosity contrast between the stagnation flow 
and the half-space is not sufficiently great so that the half-space can be regarded as 
rigid. Figure 6 shows l # o l  (note that #o is negative) as a function of b for b > 20. 
Figures 7 and 8 show #(y) and 8(v) for b = 20. 

4. Geophysical applications 
We conclude with some applications of the two stagnation flows to convection in 

the Earth’s mantle. Although this paper considers viscosity laws only of the form 
(1  1 ), the temperature dependence of the viscosity of the Earth’s mantle is generally 
regarded as having the form 

v - exp (T*/T) (34) 
(e.g. Oxburgh & Turcotte 1978). Kohlstedt, Goetze & Durham (1976) give 
T* = 6.2928 x lo4 K.  However, geophysicists often use ( 1 1 )  as an approximation to 
(34) (McKenzie 1977; McKenzie & Weiss 1980; Brun & C’obbold 1980; Morris 1981). 
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FIQURE 7 .  Dimensionless velocity 4 as a function of dimensionless distance 7 for the cold-half-space 
boundary condition. The origin 7 = 0 corresponds to the isotherm 0 = 0.1. Note that &,, the velocity 
of the half-space, is negative. b = 20. 

The approximation was first used by Frank-Kamenetsky (1939) and is a good 
approximation as long as the temperature range is small and/or T* is large. 

In  order to utilize our analysis i t  is necessary to  specify the stagnation-flow 
parameter a. No one has published a numerical simulation of convection using a 
viscosity law of the form (11).  However, Parmentier, Turcotte & Torrance (1975) have 
done a numerical simulation of axisymmetric mantle convection using a viscosity law 
u - exp [50/(1 +@)I. Since most of the flow takes place close to 8 = 1 ,  we expand 
the exponent about 8 = 1 to obtain v - exp ( -  11.18). We disregard the pre- 
exponential factors since, as mentioned above, they do not enter the analysis. 
Parmentier et al. (1975) found a maximum surface heat flux of 3.5 x lop6 cal s-l 
for a thermal diffusivity of K = lop2 crn2s-l, a thermal conductivity of 
k = 9 9  x lop3 cal K-l cm-l s-l, T, = 2100 K and T, = 1400 K. Using figure 2 and 
(IZ), we find a = 568 x 

Ageophysical application of the first stagnation flow (cold-wall boundary condition) 
is the impingement of a cylindrical convective mantle plume against the Earth’s 
surface (Morgan 1971). The Earth’s surface is sufficiently cold that we can treat i t  
as a rigid wall with respect to  the Earth’s mantle. We wish to determine the thickness 
of the thermal boundary layer, or lithosphere, above a mantle plume. Using figure 
5 ,  the above value of a ,  the above parameters except that  now = 273 K, and (12), 
we find the thickness of the lithosphere above a mantle plume to  be 41 km. 

cm-l s-l. 
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FIQURE 8. Dimensionless temperature 8 as a function of dimensionless distance 7 for the 
cold-half-space boundary condition. The origin 7 = 0 corresponds to the isotherm 8 = 01.  b = 20. 

Comparisons of anomalous topography and gravity adjacent to Hawaii and other 
sites of intraplate volcanism give lithospheric thicknesses of about 50 km (Crough 
1981), in good agreement with our theoretical calculation. 

A geophysical application of the second stagnation flow (cold-half-space boundary 
condition) is the thinning of the lithosphere by a mantle plume, a process thought 
to  be responsible for the formation of midplate swells (Crough 1978). Using figure 6, 
the above value of a, the above parameters except that  now T, = 700 K, and (12), 
we find a thinning rate of 0995 km Ma-'. The thinning rate we find is an order of 
magnitude smaller than is required by observations (Detrick & Crough 1978). From 
(12) we see that we can increase the thinning rate by an order of magnitude only by 
increasing the value of a by three orders of magnitude. But from (10) we see that 
increasing a by three orders of magnitude also increases the ambient plume velocity 
by three orders of magnitude, and mantle plume velocities of kilometres per year are 
unreasonable. This raises doubts about the ability of mantle plumes to thin the 
lithosphere without the aid of partial melting, hydrofracturing, or other effects 
(Withjack 1979; Turcotte 1981). 

This research was partially supported by the Division of Earth Sciences, National 
Science Foundation under Grant EAR-7919421. This is contribution 718 of the 
Department of Geological Sciences, Cornell University. 
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